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1. Introduction
The inscription of the Wadden Sea as a World Heritage was based on meeting three
out of four natural heritage selection criteria, referring to its dynamic landscape
(criterion xiii), the undisturbed ecological processes (criterion ix) and the important
habitats for species’ conservation (criterion x). The Statement of Outstanding
Universal Value (OUV) of the Wadden Sea incorporates EU directives (Habitats &
Birds Directive, Water Framework Directive, Marine Strategy Framework Directive)
and the guiding principle as set by the Trilateral Wadden Sea Cooperation in 1978,
which is “to achieve, as far as possible, a natural and sustainable ecosystem in which
natural processes proceed in an undisturbed way” (CWSS, 2010).

The Wadden Sea is presently affected by changes due to climate change. Numerous
effects include temperature increase, sea level change, erosion or sedimentation
(IPCC, 2007). They will manifest themselves through a number of present-day and
anticipated effects of altered seasonal patterns and physiology of organisms, which
translates into changes in distribution patterns of species, interspecific relationships
and changes in the timing of life cycle events, i.e., phenology (e.g., Beukema, 1992,
Beukema et al., 1990, 2009, Beukema & Dekker, 2005, Philippart & Epping, 2009,
Witte et al., 2010).

The Wadden Sea, as most coastal marine ecosystems, experiences multiple
environmental stressors simultaneously that can differ widely in their pathways and
strengths of impact. An understanding of all relevant stressors is critical to prioritise
conservation actions, including restoration, protection, and management. Yet,
scientific concepts and empirical evidence on the separate and cumulative impacts of
all relevant stressors is often insufficient to guide such decisions. Climate change,
together with other anthropogenic effects, such as large human-made infrastructures,
(reduced) eutrophication, fisheries, pollutants and invasive species, will presumably
lead to synergistic and/or cumulative effects.

In this report, first the status and trends of direct and indirect impacts of climate
change on key elements of the Wadden Sea ecosystem as encapsulated in directives
and principles is described. This information on climate change is based upon long-
term field observations and climate model projections, which are partly summarized
within other reports of this Quality Status Report and are based to a large degree on
data collected within the framework of the Trilateral Monitoring Action Plan (TMAP).
The spatio-temporal variation in drivers and responses will be explicitly considered.
Findings are discussed in the light of possible consequences for the conservation
targets of the Wadden Sea, especially focussing on the comparison of the assessments
versus the targets.

2. Status and trends
 



2.1 Direct impacts of climate change
 

2.1.1 Introduction

Various aspects of changing weather and climate (including temperature, sea level
change, wind and rainfall) are expected to affect species and habitats of the Wadden
Sea. Because of the variation in characteristics of different areas of the Wadden Sea
including tidal basins (such as average winter temperatures, mean tidal range,
exposure to prevailing winds and connectivity to rivers), the impacts of local changes
in weather and climate on the species and habitats are expected to vary in space and
time throughout the Wadden Sea.

In addition, it must be noted that changes in the frequency of rare and unpredictable
extreme events (e.g., heat waves and storm surges) may be more influential on
habitats and species than trends in climatic means. In particular, if individuals are
meeting the boundaries of their distribution ranges in the Wadden Sea as set by
environmental conditions such as summer temperatures (e.g., cold-water bivalves)
and emersion times (e.g., birds breeding on saltmarshes).

 

2.1.2 Temperature

Water temperatures are far from homogenous in the Wadden Sea area. Based on the
Hellmann index for winter severity (Hellmann, 1917), winters in the Wadden Sea are
generally colder in the north-eastern part compared to the south-western part.

The Wadden Sea is bordering the North Sea, which together with the Baltic Sea,
represent the two fastest warming large marine ecosystems worldwide (Belkin, 2009).
In the western part in the Dutch Marsdiep tidal inlet, Sea Surface Temperature (SST)
measurements started in 1860 (Figure 1).

The first 30 years were characterised as a period in which the annual average
temperature continually decreased by 1.5 °C (see also Figure 4 in report on "Climate
change"). Since about 1890 up until 1990, average temperature varied without a clear
trend. Only the last 25 years showed a warming of about 1.5 °C. So far, 2014 has been
the warmest year, with an average water temperature of 12.5 °C (Nauw, 2016).

Compared to the present (1981-2010), annual air temperatures in the Netherlands are
projected to rise with 1 °C to 2.3 °C by 2050 and 1.3 °C to 3.7 °C around 2085 (KNMI,
2014). For Germany, yearly mean temperatures are projected to increase by 2.0 °C and
4.9 °C (mean 2.9 °C) in 2100 (GKSS Research Station,
www.norddeutscher-klimaatlas.de). Not only average but also extreme temperatures
in winter and summer are expected to increase (Sterl et al., 2008a, KNMI, 2014). In
2100, for example, maximum temperatures will rise well above 40 °C (Sterl et al.,
2008b) and the number of days with frost might decrease by up to 45 days per year
(GKSS Research Station, www.norddeutscher-klimaatlas.de).

Some species may profit from such an increase in winter temperature, as mudflats are
less likely to freeze. This has a positive effect on the feeding conditions, with an
increased availability of polychaetes, for wintering wader populations that are
increasingly more abundant in areas with milder temperatures (Maclean et al., 2008).
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Beukema & Dekker (2011), for example, observed a significantly positive relationship
between winter temperature and number of sampling sites occupied at the Balgzand
tidal flats by the polychaete worms Lanice conchilega and Nephtys hombergii. As
mean winter temperatures are increasing, other benthic species can be negatively
affected. For example, after several consecutive mild winters at the beginning of the
new century repeated recruitment failure has been observed for mussels (Mytilus
edulis) and cockles (Cerastoderma edule) (Strasser et al., 2003, Beukema et al.,
2009). Both species constitute an important food source for bivalve eating birds such
as oystercatchers and eider ducks.

Figure 1. Long-term field observations on annual means (red dots) of water
temperature in the Dutch Marsdiep, the westermost tidal inlet of the Wadden Sea, from
1861 to 2015. The black line indicates the 10-year running average. Since 1860, the
seawater temperature of the Marsdiep has been measured daily by hand, at 8am from
the dike near the jetty of the NIOZ Royal Netherlands Institute for Sea Research. Since
the year 2000, continuous seawater temperature is also being recorded electronically
(Van Aken, 2008, Nauw, 2016).

 

2.1.3 Sea level and tidal ranges

Sea-level rise is expected to accelerate in the future due to global warming (see also
report "Climate change"). Field observations suggest that some systems remain stable
as sediment import, tidal-flat and salt marsh accretion can keep pace with sea-level
rise when it does not exceed 3-6 mm per year (Van der Spek & Beets, 1992, Bartholdy
et al., 2010, Madsen et al., 2007, Elias et al., 2012, Suchrow et al., 2012), while other
systems might degrade and finally drown (Van Wijnen & Bakker, 2001). Thus, this
process is strongly site specific.

When sedimentation rate does not keep up with a rise in sea level, it may induce the
landward migration of the species such as seagrass to limits imposed by anthropogenic
barriers such as dikes (Valle et al., 2014). If intertidal areas get lost, birds might lose
important foraging and resting regions (Munaretto & Klostermann, 2011).

Laursen et al. (2010b) draw attention to the fact that the Wadden Sea regions where
negative trends in bird numbers dominate, are characterized by a large tidal amplitude
(central Wadden Sea), whereas areas where bird numbers have generally increased are
characterized by a small tidal amplitude (the Netherlands and Denmark). The changes
in bird numbers were only attributed to species depending on tidal flats, whereas
species depending on adjacent salt marshes did not change in numbers.

Within the Wadden Sea, however, a process of drowning following an increase in high-
tide levels is to expected to start earlier and proceed faster in tidal basins with lower
Mean Tidal Range (MTR) as in central basins with higher MTR (Hofstede, 2015, see
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also report "Climate change"). This would imply that mobile species might start
migrating from more affected to less affected tidal basins within the Wadden Sea.

 

2.1.4 Wind and hydrodynamic forcing

In addition to temperature-induced changes in sea level, water heights in the Wadden
Sea are also influenced by wind conditions in NW Europe. Historical records indicate
that 95th as well as 99th percentile wind speeds in the North Sea basin have increased
since 1960 (Alexandersson et al., 2000, Weisse et al., 2005, Feser et al., 2015). Model
studies on future (2071-2100) wind conditions in the North Sea Basin show an
increase in 99th percentile wind conditions for the W and SW and a reduction for those
from the N and NW (De Winter et al., 2012).

If wind-driven wave forcing is an important factor limiting habitat suitability, such
changes in wind direction may modify the conditions for potential habitats, e.g.,
intertidal musselbeds. Within the Dutch Wadden Sea, for example, the eastern part is
more suitable for mussel bed settlement compared to the western part. This region is
limited by wave forcing, and habitat suitability is more sensitive here to changes in the
wave climate (Donker et al., 2015).

Changing wind patterns may furthermore influence the occurrence and height of
storm surges. Storm surges temporally limit the emersion time of mudflats and,
therefore, the accessibility of resources for waders during low tide. In addition, storm
surges increase the flooding risk of saltmarshes. This may affect the breeding success
of bird species such as oystercatchers when the number of storm surges increases in
the breeding season (Van de Pol et al., 2010).

It is hypothesized that the observed changes in wind direction, sea level and
temperature could affect the central Wadden Sea most, in particular with regard to
sediment composition (Oost et al., 2009, Philippart & Epping, 2009, Laursen et al.,
2010b). In the German Wadden Sea, an increase in grain size was related to an
increase in hydrodynamic forcing (Bartholomä & Flemming, 2007). A coarsening of
the sediment due to increased hydrodynamic forces may have contributed to the
observed reduction in benthic invertebrate stocks (Dolch & Reise, 2010).

 

2.1.5 Precipitation

Within north-western Europe, extreme precipitation amounts are expected increase
throughout the year (IPCC, 2013). Subsequent changes in riverine runoff might locally
influence various ecosystem processes, including migration of juvenile fish to
nurseries (Vinagre et al., 2009), distribution of bivalve larvae (Folmer et al., 2014) and
mortality of cockles (Kristensen, 1958).

Furthermore, rainfall-driven changes in estuarine circulation may affect exchange of
suspended sediments and organic matter between the North Sea and the Wadden Sea.
Hence, primary productivity and carrying capacity of the Wadden Sea can be
influenced if changing precipitation patterns result in changes in river outflows
(Burchard & Hetland, 2010, Flöser et al., 2011, Van Beusekom et al., 2012, Jung et al.,
2017).
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2.2 Indirect effects of climate
change
 

2.2.1 Distribution shifts, phenology and body size

Climate change affects different levels of biological organization. If coexisting species
have different sensitivities and differential responses to climate change, there will
certainly be an emergence of modified communities with novel species combinations
and/or changes in the distribution and strength of their interactions (Lurgi et al.,
2012). Early studies focused on population and species-level effects, and showed
expansions of species to the poles and/or deeper waters following temperatures as
climate warms, together with observations of phenological change (Parmesan & Yohe,
2003, Walther, 2010, Chen et al., 2011). More recently, a number of studies have
reported shrinking of body size as an effect of climate warming (e.g., Lurgi et al., 2012,
Van Gils et al., 2016).

The distributions of marine species responding to climate change appear to move at
the same rate as to be expected from changes in mean ocean surface temperatures
(Poloczanska et al., 2013). Generally, further warming will drive new warm-water
species from the south into northern regions, whilst local cold-water species might be
driven out of the area (Beaugrand et al. 2003, Beukema & Dekker, 2011). In the
Wadden Sea, distribution shifts have been observed for species within many
taxonomic groups in the Wadden Sea (Figure 2). In some cases, however, marine
species that are bound to particular temperatures might actually have to migrate in the
direction of the equator (Boersma et al., 2016).



Figure 2. Sea surface temperature map shows a selection of warm-water species
shifting northwards, whereas cold-water species retreat the Wadden Sea to keep up
with the colder waters. sardines, anchovies (Beare et al., 2004), herring (Clupea
harengus) (Alheit & Hagen, 1997), spoonbill (Platalea leucorodia) and the
Mediterranean gull (Larus cachinnans) (Koffijberg et al., 2015) migrate northwards and
enter the Wadden Sea, whereas cod (Engelhard et al. 2014), particular species of
zooplankton (Beaugrand, 2004) and polychaetes (Amphictene auricoma) (Hiddink et al.,
2015) retreat from the Wadden Sea and shift polewards. Rocky shore snails
(Mieszkowska et al., 2005) and Eurasian curlews (Numenius arquata) (Hornman et al.,
2011; Laursen and Frikke, 2013) shifted from the UK towards the Wadden Sea,
harbour porpoises moved in from Norwegian waters (Hammond et al., 2013) and
Eurasian curlews (Numenius arquata) from the UK (Maclean et al., 2008). Common
eiders (Somateria mollissima) retreated and shifted more towards Denmark (van
Roomen et al., 2012). Drawing by L. Mekkes.

Phenology, or the timing of repeated seasonal activities, such as reproduction and
seasonal migration, is highly sensitive to global warming. Although many marine
organisms are responding to interannual changes in temperature, there is
considerable variability in magnitudes and patterns of responses (Parmesan & Yohe,
2003). Seasonal changes in the timing of biological events for different functional
groups are leading to mismatches (Edwards & Richardson, 2004). This could affect
metabolic balances, food availability and interactions between predators and preys,
and, in turn, affect mortality and reproduction rates (e.g., Philippart et al., 2003,
Visser & Both, 2005).

Changes in phenology appear to have caused alterations within the Wadden Sea food
web, creating matches and mismatches between interacting species (Figure 3).
Species-specific changes in phenology underline that different species (and even
different life phases within one species) might be subject to differing environmental
constraints and subsequently respond differently to environmental changes during
their life.

Figure 3. Possible mismatches in species compositions due to climate change. Top



panels: Warmer temperatures during winter causing epibenthic predators to survive,
which increase predatory pressure upon bivalves (Beukema, 2009), which in turn result
in a decrease in bivalve-eating birds (Camphuysen et al., 2002), while crab-specialists
increase in number (Luczack et al., 2013). Bottom panels: Increased water
temperatures cause a shift in plankton composition. This causes an increase of grazing
by zooplankton on phytoplankton (Wiltshire & Manly, 2004). As a result, cod
recruitment reduces and cod stock declines. Drawing by L. Mekkes.

Shrinking of average body sizes is expected to have consequences for trophic
interactions (Sheridan & Bickford, 2011, Lurgi et al., 2012). Smaller bill sizes of knots,
for example, reduces their access to deeper buried bivalve prey (Van Gils et al., 2016).
If migratory fish or birds are concerned, then growth inhibition at nursery or breeding
sites might influence survival in other areas, and subsequently affecting overall
population sizes (e.g., Genner et al. 2010, Van Gils et al., 2016).

 

2.2.2 Distribution shifts in plankton, seaweeds and invertebrates

Within the North Sea, the range of warmer water species of plankton has extended
northward by 1000 km in only 40 years (e.g., calanoid copepods), and colder species
have retreated out of the North Sea (Beaugrand et al., 2003, 2014). Not all species,
however, show a northward migration.

Many warm-water rocky top shells (e.g., Gibbula umbilicalis) and barnacles (e.g.,
Balanus perforatus), which were formerly absent in the Wadden Sea, have spread
south from the tip of Scotland along the North Sea coast of the UK (Mieszkowska et al.,
2005). Abundances of several species within species groups of jellyfish, decapods and
echinoderms have increased as well (Kirby & Beaugrand, 2009, Gibbons &
Richardson, 2009), and appear to flourish in these changing temperature-related
conditions with consequences on species relationships in both the plankton and
benthos.

Milder temperatures may facilitate the establishment of newly introduced warm water
species. Anthropogenic introduced species often originate from warmer coastal areas,
such as the pacific oyster (Crassostrea gigas), the American slipper limpet (Crepidula
fornicata) or the Australian barnacle (Austrominius modestus) (Witte et al. 2010, see
also Figure 4 in see also report on "Climate change"). Many immigrating species are
settling in mussel and oyster beds being used as habitat and attachment substratum.
Examples are the Japanese seaweed (Sargassum muticum), the Asian tunicate (Styela
clava) and Asian shore crabs (Hemigrapsus takanoi, Hemigrapsus sanguineus)
(Buschbaum et al., 2012).

 

2.2.3 Distribution shifts in fish

For fish in temperate waters, higher temperatures generally resulted in an
introduction of new species from the south and declines in local stocks (Perry et al.,
2005, Rindorf & Lewy, 2006). For the Wadden Sea, an overall increase of fish
biodiversity was observed as the result of increasing small southerly species, such as
sardines and anchovies (Beare et al., 2004), and a decrease in abundance and range of
large northerly species, such as Atlantic Cod (Gadus morhua) (Hiddink & Ter
Hofstede, 2008, Engelhard et al., 2014).
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In the Marsdiep tidal inlet, the biomass of Eelpout (Zoarces viviparous), for which the
Wadden Sea forms the southern border of its distribution, has locally decreased, whilst
that of sea bass (Dicentrarchus labrax) encountering its northern border in the
Wadden Sea, has increased in concordance with increasing water temperatures (Van
Walraven et al., 2016).

Next to immigrating species also local species can profit from mild winters. Here, two
non-commercial flatfish species (Buglossidium luteum and Arnoglossus laterna) show
this trend of increased abundance as a result of their warm-water prevalence and
increased survival rate during mild winters (Van Hal et al., 2010).

 

2.2.4 Distribution shifts in birds

Milder temperatures have caused shifts in migrating species of birds. During the last
30 years, a northeast shift of wader-populations wintering in Europe has been
indicated (Maclean et al., 2008). Also, water bird species normally wintering in the
south or south-west, shift northwards. This causes an increase of water bird species in
the Wadden Sea, such as the Eurasian curlew (Numenius arquata) (Hornman et al.,
2012, Laursen & Frikke, 2013).

Such a geographical redistribution might be due to birds responding to milder winters
by shifting to new areas with environmental conditions, which were previously too
severe, but are now tolerable (Maclean et al., 2008). Additionally, migration flights are
costly, so a reduction of distance to breeding sites probably saves energy (Fox et al.,
2015).

To keep trace with the optimal breeding conditions in combination with the even
faster changing northern climate, bird species are moving northwards (Lehikoinen &
Virkkala, 2016). For example, the spoonbill (Platalea leucorodia) and the
Mediterranean gull (Larus cachinnans), together with other species that formerly
occurred in southern Europe, have become regular breeders in the Wadden Sea
(Koffijberg et al., 2015).

For birds, climate change is not only a matter of temperature increase, but also change
in precipitation regime. Southern European and more southern wetlands become
smaller or even disappear due to reduced rainfall. This severely affects wintering
conditions for some bird populations, which use the Wadden Sea on their migratory
route (Fox et al., 2015). As a result, water birds formerly relying on these sites may
shift to other regions or might face decreasing population sizes when failing to adapt
(Møller et al., 2008).

 

2.2.5 Shifts in timing of migration and reproduction

In the Wadden Sea more birds stay in the eastern part during mild winters and depart
earlier to the breeding grounds when springs are warm (Bairlein & Exo, 2007). In
addition, long-term changes trigger responses, although these temperature-mediated
shifts are not necessarily similar in all bird species.

During the last 30 years, the greylag goose (Anser anser) departs three weeks earlier
and lapwing (Vanellus vanellus) four weeks earlier than in former time, opposite to
barnacle geese (Branta leucopsis) that have postponed the departure by four weeks,
probably taking advantage of an early growth in vegetation (Laursen & Frikke, 2013).



These examples indicate that species wintering in the Wadden Sea respond to climate
change by developing different migration and stopover strategies.

In a common tern (Sterna hirundo) colony at the German North Sea coast, arrival date
and body mass after spring migration was linked with environmental conditions
including climate indices (Szostek et al., 2015). Because the phenological changes
differed for birds of different age, common terns might be subject to differing
environmental constraints or respond differently to conditions during their annual
cycle depending on their age (Szostek et al., 2015).

Common seals (Phoca vitulina) give birth in the Wadden Sea area during the summer
months. For the Dutch Wadden Sea, analyses of the number of pups as counted by
means of annual aerial surveys showed an average advanced shift of 0.71 d yr-1 over the
period 1974 and 2009 (Reijnders et al., 2010), whilst analysis of stranding dates of
orphaned pups admitted for rehabilitation revealed an average shift of 0.88 days per
year over the period 1974-2008 (Osinga et al., 2012).

The timing of common seal reproduction showed a similar shift in other parts of the
Wadden Sea, with pups being born -0.68 d yr-1 in Schleswig Holstein and -0.59 d yr-1 in
Niedersachsen (Reijnders et al., 2010). This shift in phenology is considered to reflect
an adaptive response of the animals to altered local circumstances, amongst others
food availability and climate change (Reijnders et al., 2010; Osinga et al., 2012).

 

2.2.6 Changes in trophic transfer and trophic interactions

An earlier seasonal onset of zooplankton grazing due to increased spring temperatures
(Wiltshire & Manly, 2004) may restrain the peak in microalgal biomass during the
spring phytoplankton bloom, and promote regenerative production by flagellates at
the expense of diatoms. Within the North Sea, a recent change in temperature has
caused modified trophic interactions in the food chain, for example, the trophic
transfer from phytoplankton via zooplankton (Calanus finmarchicus) to cod (Kirby &
Beaugrand, 2009). Subsequently, sea birds depending on fish abundance, need to shift
towards more preferable conditions or decline in number (Zhang et al., 2015).

As the spring migration of predatory shrimps and crab species is enhanced by warmer
conditions, the resulting increase in predation pressure may reduce the survival of
their prey, including Baltic tellins (Macoma balthica) (Philippart et al., 2003;
Beukema & Dekker, 2005; Beukema et al., 2009). Such bivalve species may, however,
adapt to these conditions by advancing their timing of spawning and thereby escaping
the enhanced predation pressure (Philippart et al. 2014). This may, amongst other
factors including reduced fishing efforts, have contributed to the recent large
recruitment events of Baltic Tellins in the Dutch Wadden Sea (Compton et al. 2016).

Temperature also affects population size in birds indirectly through the food web. As
the lack of cold winters increases predatory pressure on blue mussel (Mytilus edulis)
spat, mussel stocks decrease (Beukema, 2015) negatively affecting higher trophic
levels, such as common eiders (Somateria mollissima).

Further, decreasing numbers of eiders breeding in the large Baltic colony at
Christiansø, east of Bornholm, and wintering in the Wadden Sea (from ~3,000 pairs in
1992 to ~1,000 pairs in 2008), is highly related to the mussel stocks in the Wadden
Sea (Laursen & Møller, 2013). Moreover, in the Dutch part of the Wadden Sea, the
decrease in the contribution of cultured mussels to the diet of Eiders during the course
of winter seasons, indicates that harvesting of mussels from the culture plots might



further reduce this high-quality food source, forcing the eiders to switch to less
profitable prey at the end of the winter, which has reproductive consequences
(Laursen & Møller, 2013; Cervencl et al., 2015).

Recently, evidence was presented for a case of such body shrinkage, potentially due to
malnutrition in early life. A long-distance migratory bird (red knot Calidris c. canutus)
experiences high warming rates at its Arctic breeding grounds, produces smaller
offspring with shorter bills during summers with early snowmelt. The short-billed
individuals showed reduced survival on their tropical wintering grounds, probably
because they could no longer get access to deeply buried and most profitable food
sources. This finding illustrates the consequences of climate change during juvenile
growth at breeding grounds for survival at later stages during the life cycle (Van Gils et
al., 2016).

 

2.3 Other effects of climate change
 

2.3.1 Diseases and parasites

Disease has been implicated in the recent increase in occurrence and severity of mass
mortalities, especially in marine invertebrates (Fey et al., 2015). While disease
associated mortalities also occur in Wadden Sea species, cases where disease could be
convincingly linked to these phenomena have been rare. Notable exceptions include
disease associated mass mortalities of European harbour seals Phoca vitulina as the
result of a phocine distemper virus in 1988 and 2002 (Härkönen et al., 2006) and
Pacific oysters Crassostrea gigas in 2005 (Watermann et al., 2008).

Water temperature is positively correlated with the development of many disease
agents including various infective Vibrio bacteria (Wendling and Wegner, 2013) as
well as many parasites, thereby increasing the risk of infection and diseases during
summer (Schade et al., 2015). In the future, warmer summers are expected to occur
more often, favouring growth of Vibrio spp. that could also be infective for humans
(Sterk et al., 2015).

Interannual temperature fluctuations are likely to alter host–parasite interactions,
e.g., via common small fish species such as three-spined stickleback Gasterosteus
aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and
lesser sand eel Ammodytes tobianus (Schade et al., 2015). Different phenological
responses of hosts and parasites will also lead to mismatches between coevolved
species pairs and might force parasites to include other species into their life cycle.

Similarly, temperature dependent predation interactions can affect host-parasite
interactions, when predators prey on free-living stages of parasites (Goedknegt et al.,
2015). Since parasitism and disease can have profound impacts on sensitive
ecosystems with direct and indirect effects mediating disease risk under climate
change, similar considerations should be taken into account as for other species
interactions.

 



2.3.2 Synergistic and large-scale effects

Furthermore, other human pressures, such as fisheries, pollution and hydrodynamics,
may interact synergistically with climate change effects. For example, Atlantic cod has
an optimal thermal niche of 9 °C to 10°C and is equal to the thermal niche of
zooplankton, which serves as main diet for cod recruitment. Pressure of fisheries
initially affects the abundance of cod, though a steady decline is caused by the
decreased abundance of zooplankton, as a function of increased temperature. So,
climate change indirectly drives cod to the edge of its thermal niche and makes it a
highly vulnerable species (Beaugrand & Kirby, 2010).

Several NW European seas, including the North Sea, the Baltic Sea, the Black Sea and
the Mediterranean Sea, underwent a major change at the end of the 1980s that
encompassed local atmospheric, hydrological, and ecological conditions (e.g., Edwards
et al., 2002, Conversi et al., 2010, Ljunggren et al., 2010). These regime shifts appear
to be linked to the larger scale, northern hemisphere climatic conditions. Such parallel
developments bear implications for the development of climate change scenarios, as
synchronous shifts may provide the key for distinguishing local (i.e., basin)
anthropogenic drivers, such as eutrophication or fishing, from larger scale
(hemispheric) climate drivers.

3. Recommendations
 

3.1 Monitoring
 

3.1.1 Safe-guarding relevant long-term field observations

Recommendation #1: Continuing and further strengthening long-term
field observations (including TMAP), the scientific analyses of the data
and the publication of the results.

In line with the expectations in the Wadden Sea Plan 2010 (CWSS, 2010), average
temperatures in the Wadden Sea have increased further as a result of global warming.
Since 2009, impacts of climate change on Wadden Sea habitats and species became
more evident, including shifts in species composition and phenology. These findings
stress the importance of continuous and consistent monitoring efforts at a trilateral
scale. Given the ecosystem dynamics within the Wadden Sea, a.o. as the result of
climate change, annual reports on the status of this area are recommended.

 

3.1.2 Efficient increase of spatiotemporal resolution

Recommendation #2: Making more intense use of innovative techniques,
including satellite images and automated sensor networks, to increase the
temporal and spatial resolution without increasing costs at a similar



magnitude.

Shifts in phenology have been recently observed for many taxonomic groups, including
plankton, benthos, fish, birds and sea mammals in the Wadden Sea and the adjacent
North Sea. Species-specific changes in phenology underline that different species (and
even different life phases within one species) might be subject to differing
environmental constraints and subsequently respond differently to environmental
changes during their life.

Annual sampling campaigns are not sufficient to capture shifts in species-specific
phenology. Furthermore, the sensitivity of habitats and species to climate change
appears to be related to (other) environmental conditions, which vary throughout the
Wadden Sea (e.g., winter temperatures, tidal amplitudes). Hindcasting and forecasting
impacts of climate change, therefore, requires information on high spatial and
temporal resolutions for the different functional groups.

Such information can only be gathered by deploying new techniques which are able to
capture higher resolution in time (automated networks), space (satellite images) and
biodiversity (e.g., molecular metabarcoding, eDNA).

 

3.1.3 Addressing appropriate scales in time and space

Recommendation #3: Performing monitoring at larger than local scales,
i.e. including the potential sources and sinks, in order to understand the
origin and fate of Wadden Sea organisms as the result of climate change.

Observed shifts in distribution for species within many taxonomic groups (e.g.,
plankton, macrozoobenthos, fish, birds and sea mammals) might be related to changes
in local circumstances or due to large-scale shifts in environmental conditions,
including climate change. On average, so far more southern species enter the Wadden
Sea than northern species migrate out, which resulted in an overall increase in
biodiversity. To better understand (and possibly forecast) such shifts in distribution,
information on shifts in distribution of coastal organisms at a larger scale
incorporating adjacent regions (e.g., North Sea) should be gathered and included.

 

3.2 Research
 

3.2.1 Determining dose-effect relationships

Recommendation #4: Gathering more information on dose-effect
relationships, preferably within one scientific framework (e.g., Dynamic
Energy Budgets), and on probabilities of occurrences of specific
environmental conditions at relevant spatial scales (i.e., from ecotopes via
habitats to tidal basins).

Various aspects of weather and climate (including temperature, sea level change, wind
and rainfall) are expected to further affect species and habitats of the Wadden Sea. The
effects depend on the nature of the environmental changes (e.g., frequency and height



of heat waves) and the resilience of the species or habitat to this change (e.g., tolerance
to high temperatures).

Combining the local information on environmental change (e.g., SST), an organism’s
ecophysiology (potential adaptation of an organism's physiology to environmental
conditions) and ecological processes (e.g., rates of mineralisation, primary production,
filtration, parasite transmission) is essential to transform observational monitoring
data into mechanistic predictive modelling capacity of the impacts of climate change
on Wadden Sea communities.

 

3.2.2 Determining synergistic effects

Recommendation #5: Implementing an existing (or developing a new) tool
to weigh separate and synergistic effects of climate change on Wadden Sea
species and habitats.

With regard to the effects of climate change on species and habitats, a distinction can
be made of (i) the effect of one factor (e.g., sea level rise) on one species (e.g., mussels)
or habitat (tidal flats), (ii) the effect of a combination of factors (e.g., sea level rise and
SST) on one species or habitat, and (iii) the interactive nature of a combination of
factors on a suite of species and habitats. The interactive effects of climate change
parameters need to be quantified accurately and can then be used to identify key
parameters.

Indicators of the status of an ecosystem are most useful if they are sufficiently
comprehensive to provide information about the status of and potential interactions
among all components of this ecosystem (Halpern et al., 2012). Applying an existing
tool (e.g., the Ocean Health Index) or developing a new tool (in case the existing tools
are considered to be inappropriate) would also allow for annual reports of the status of
the Wadden Sea and for exploring the consequences of various scenarios of climate
change (e.g., KNMI, 2014) on different spatial scales to identify vulnerable regions and
habitats within these.

Preferably, the tool should incorporate all relevant aspects of the Wadden Sea area,
i.e., next to abiotic and biotic components also economic and socio-culturally valued
aspects (Philippart et al., 2014b).

 

3.3 Management
 

3.3.1 Trilateral adaptive management approach

Recommendation #6: Developing a trilateral adaptive management
procedure for the protection of species, habitats and sites for ensuring
their value for future generations.

Research and monitoring are key components for informed policy and decision
making, especially when coastal management aims to achieve a sustainable balance
between protecting nature and allowing multiple human uses. However, an important



challenge is to evaluate, integrate, and extend existing monitoring systems to provide a
more effective and less biased platform for decision-making toward sustainability.

Ensuring that the resource exploitation of the Wadden Sea is sustainable and
minimizes the effects on species and habitats within the dynamics and uncertainties
set by climate change requires a continuous feed-back of targeted information on the
status of the Wadden Sea ecosystem to decision makers. Such information could, for
example, be based upon results of key predictions for (environmental) conditions
where management can have the highest beneficial impact to achieve their goals. This
information can then be used to evaluate past actions and consider the effectiveness of
future management regulations.

4. Summary
During the last decades, the Wadden Sea ecosystem was already found to show clear
signs of recent climate change, including temperature increase, import of southern
warm-water species and changes in the timing of life cycle events. In this report, an
update of the 2009 QSR is given on the most recent status and trends of direct (a.o.
temperature, sea level, tidal amplitudes, wind, precipitation) and indirect impacts of
climate change on key elements of the Wadden Sea ecosystem. The historically
observed indirect impacts were found to have increased with additional species’ shifts
in geographical distributions (e.g., eel pout, sea bass, Eurasian curlew, common eider)
and in the timing of migration (e.g., greylag goose, lapwing) and reproduction (e.g.,
common seals).

New findings on impacts of climate change on Wadden Sea species included the
reduced survival of young migratory birds (red knot) due to changing food availability
at their Arctic breeding grounds. Based on the implications of such findings for
conservation targets, it is recommended to safe-guard and strengthen existing long-
term field observations, including a cost-effective increase in spatio-temporal
resolutions. To translate these observational monitoring data into mechanistic
predictive modelling capacity of the impacts of climate change on Wadden Sea
communities, knowledge gaps with respect to dose-effect relationships and synergistic
effects should be filled. To ensure that human activities within the Wadden Sea are
sustainable (with minimum effects on species and habitats within the dynamics and
uncertainties set by ongoing climate change), a continuous feed-back of targeted
information on the status of the Wadden Sea ecosystem to decision makers is required,
e.g., by means of an interactive open-access data and information platform for the
Trilateral Wadden Sea.
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